Microbial Pill Sensor Detailed Design

SDMAY25-17

CADE KUENNEN, ALEX UPAH, WES RYLEY, RAKESH PENMETSA

FACULTY ADVISOR & CLIENT: DR. MENG LU

Project Overview

- Develop biosensing system that will house, monitor, and transmit data using bioengineered detection mechanism.
- Monitor and control the temperature of the housing unit to maintain cell growth.
- Optical circuit to emit light and measure fluorescent output
- Transmit the collected data through a Low-Energy Bluetooth connection.

Biosensing Mechanism

- Genetically engineered E. Coli expresses Green-Fluorescent-Protein upon presence of Nitrate
- Absorption of blue light by GFP causes emission of green light
- Measuring intensity of green light emission gives concentration of Nitrate in solution
- Generalizable mechanism to different microbes and analytes via bioengineering Not our job!!

3D Design

Module 1: Microbe Housing Chamber

- House for bioengineered microbes
- Maintains conditions to support cell growth
- Flow in of solution with analyte

Module 2: GFP Sensing PCB

- Detects fluorescent response from microbes
- Activation of LED for biodetection
- Measurement of light intensity via photodetector

3D Design

Module 3: Temperature Control

Maintains temperature environment

Module 4: Microcontroller PCB

- Controls LED activation
- Enables Bluetooth data transmission

Module 5: Power Chamber

Houses battery for power

Circuit Design

- ESP32 C3 activates LED at desired timing interval
- Photodetector circuit converts GFP emitted light into measurable voltage
- ESP32 C3 transmits voltage via low power Bluetooth

- Lensing needed to uniform distribute light from LED in chamber
- Filtering needed to ensure only measuring emitted light from GFP response

Functionality

- User places pill sensor in environment
- Solution intake membrane filters environment into housing
- GFP sensing PCB module does its function
- User sees output of sensors on GUI

Technology Considerations

- XIAO ESP32-C3 MCU kit to transfer data via BLE (Bluetooth Low-Energy)
 - + Preserves battery life
 - Short range data transmission
- TSL2591 Photodetector Circuit
 - + Accurate readings with minimal noise
 - Overprocesses data and drains battery life

XIAO ESP32-C3 MCU KIT

TSL2591 Photodetector

Technology Solutions and Alternatives

- Project technological demands are simple
- Simplify current designs to remove extra unneeded components
 - No need for on board data processing
 - Remove extra GPIO ports from the ESP32-C3 MCU

Areas of Concern and Development

Concerns

- Current design lacks a consistent front-end GUI for users
- No implementation of temperature monitoring and controls on current design
- Biosensor testing

Development

- Completed basic testing with simplified prototype
- Creating GUI and processing
- o Refinement of ESP32-C3 DevKit
- o Design of optical detection module

Conclusion

- Breaking the project into modules simplifies design steps
- Focusing on the user's needs to refine current designs
- Select simple components to minimize battery usage and processing
- Develop GUI and temperature controls after developing first prototype to ensure progression

Thank you! Any Questions?